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Scars of Periodic Orbits in the 
Stadium Action Billiard 
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Compact billiards in phase space, or action billiards, are constructed by trun- 
cating the classical Hamiltonian in the action variables. The corresponding 
quantum mechanical system has a finite Hamiltonian matrix. In previous papers 
we defined the compact analog of common billiards, i.e., straight motion in 
phase space followed by specular reflections at the boundaries. Computation of 
their quantum energy spectra establishes that their properties are exactly those 
of common billiards: the short-range statistics follow the known universality 
classes depending on the regular or chaotic nature of the motion, while the 
long-range fluctuations are determined by the periodic orbits, In this work we 
show that the eigenfunctions also follow qualitatively the general characteristics 
of common billiards. In particular, we show that the low-lying levels can be 
classified according to their nodal lines as usual and that the high excited states 
present scars of several short periodic orbits. Moreover, since all the eigenstates 
of action billiards can be computed with great accuracy, Bogomolny's semi- 
classical formula for the scars can also be tested successfully. 

KEY WORDS: Billiards; periodic orbits: sears; semiclassical limit. 

1. I N T R O D U C T I O N  

The  c o n c e p t  o f  ac t i on  bi l l iards  13~ real izes  the  p rac t i ca l  need  to  t r u n c a t e  

q u a n t u m  m e c h a n i c a l  H a m i l t o n i a n  ma t r i ce s  w h e n  p e r f o r m i n g  n u m e r i c a l  

d iagona l iza t iOns .  In  the  case  whe re  the  m a t r i c e s  are  wr i t t en  in t e rms  o f  ha r -  

m o n i c  osc i l l a to r  basis  s tates ,  the  t r u n c a t i o n  at  a g iven  q u a n t u m  n u m b e r  N 

has  a c lea r  c lass ical  i n t e rp r e t a t i on :  it c o r r e s p o n d s  to a cu to f f  in the  classical  

m o t i o n  at  the  va lue  h ( N +  1/2) o f  the  ac t i on  var iab le .  T h e  idea  o f  an  ac t i on  
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billiard is therefore to define a quantum mechanical system as a finite block 
of a given (infinite) Hamiltonian matrix, like the block one actually 
diagonalizes on a computer. The classical analog of such systems has its 
motion limited not in coordinate space, but in action space, hence their 
name action billiards. 

In a previous paper ~3~ the classical cutoff in the action variables was 
studied in detail. We showed that the angle variables suffer a discontinuous 
jump when a trajectory hits the action boundary and the connection rule 
for the angles before and after the collision, was derived. In the extreme 
case of a harmonic oscillator, no trajectory ever hits the boundary and the 
truncation has no classical or quantum effect. ~4~ On the other hand, for 
Hamiltonians depending only on the angles, all trajectories will eventually 
hit the billiard boundary. These systems are the analog of common 
billiards, and it has been shown ~1'2~ that the statistical properties of their 
energy spectra follow exactly those of common billiards, i.e., the short- 
range statistics follow the known universality classes, whereas the long- 
range correlations are dictated by the periodic orbits. 

From the point of view of semiclassical theory, the Hamiltonian to be 
considered in this paper [see Eq. (1)] is an extreme example of a non- 
kinetic-plus-potential system. Although the earlier derivations of the semi- 
classical limits only considered that kind of problem, more recent results 
based on phase space representations ~8'9~ have shown that the general 
theory works for any kind of Hamiltonian, including the type described 
here. 

In this work we take a step forward in the study of these types of 
action billiards by analyzing in detail the wavefunctions in a stadium- 
shaped billiard. Our computations show that several individual eigenstates 
are scarred by the shortest periodic orbits of the stadium, much the same 
as for the wavefunctions of the common stadium billiard. Morever, since 
our diagonalization is exact, we are able to compute averages over several 
eigenstates of the probability density ~5"6~ providing another example of 
Bogomolny's theory of scars, which, as far as the authors know, has only 
once been previously tested. ~7~ 

This paper is organized as follows: in Section 2 we define the stadium 
action billiard and review its most important properties. Section 3 presents 
the numerically computed wavefunctions, focusing on low-lying states and 
on scars of periodic orbits in highly excited states. We also apply 
Bogomolny's theory by averaging over groups of wavefunctions and show 
that, at places where the average energy corresponds to the quantized 
action of a classical orbit, its scar shows up very clearly in the averaged 
functions. Husimi distributions are also considered and some examples are 
given. Our conclusions are presented in Section 4. 
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2. T H E  S T A D I U M  A C T I O N  B I L L I A R D  

The simplest two-dimensional Hamiltonian whose dynamics in the 
action variables space corresponds to motion along straight lines is given 
byt~ 

H ( L  O) = - c o s  01 - cos 02 ( 1 ) 

where 0; and I; are action and angle variables for the harmonic oscillator 
H~ = (p~, + q~)/2. Indeed, since the action variables do not appear explicitly 
in H, Hamilton's equations can be integrated immediately, yielding 

0t(t) = 0io = const 

02( t  ) = 020 ~- const 

I i ( t )  = I l o -  t sin 010 

I d t )  = 12o - t sin 020 

(2) 

which is analogous to a free particle in "coordinates" I and "momenta" 0. 
A classical action billiard is now constructed by limiting the accessible 
action space to a closed region. When a trajectory hits the boundary con- 
taining such a region, the "momenta" 0 jump instantaneously. For the 
Hamiltonian above, it can be shown that the jump in the angles 
corresponds to a specular reflection at the boundary, exactly like the reflec- 
tions in common billiards, as shown schematically in Fig. 1. Therefore, the 
shape of the billiard contour completely determines the nature of the classi- 
cal motion. 

The quantization of the Hamiltonian (1) can be achieved by writing 

COS 0 / =  2 qi 
(qi + p2)I/2 

and using the usual step operators a and a t for the harmonic oscillator H;. 
Then 

~,- + eL-* 

and 
1 2 /~'=~ i=IE ai{atiai+(li(lti}-l/2+{(ltiai+aiati}-l/2~ti (3) 

822/83/I-2-19 
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Trajectory reflecting specularly at the bounderies of an action billiard. Fig. 1. 

where we have symmetrized the Hamiltonian to ensure the Hermitian 
property. 

Once the classical boundary has been specified, the quantum mechani- 
cal billiard is obtained by computing the matrix elements 

} _ _ , = , v / ~ l t , n , + � 8 9  o~, , ; , , , ;_ ,+ \n ,+~j  ~,,;,,,;+, (4) 

where the states Into) are eigenstates of the two-dimensional harmonic 
oscillator H~ + H2 and the numbers (n j, n2) and (n'~, n ' )  are such that their 
classical counterparts / ~ = ( n i +  I /2)h  and I'~=(n';+ 1/2)h lie inside the 
billiard contour. We shall call S this set of points. Although the quantum 
matrix is finite, its size increases as h -2 as h ~ 0. 

2.0 

1.5 

1.0 

0.5 

0 . 0  ~ i ~ I r I , I 
0 . 0  0.5 1.0 1.5 2.0 

Fig. 2. Desymmetrized stadium billiard. The lattice points correspond to quantized actions 
Ii = (hi = 1/2) h. In this example h = 0.05, which gives 404 lattice points, or basis states, inside 
the billiard contour. 
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In this paper we shall work with the desymmetrized stadium billliard, 
illustrated in Fig. 2, corresponding to the odd-odd eigenstates of the full 
stadium. The dimensions of the billiard are shown in the figure and they 
shall remain fixed throughout this work. The lattice points indicate the har- 
monic oscillator eigenstates from which the quantum matrix is built. In 
Fig. 2 the lattice illustrated corresponds to h = 0.05, but here we shall work 
with a smaller value, namely h = 0.020, which corresponds to a 2455 x 2455 
quantum matrix. The position of the desymmetrized billiard in the (I~, I2) 
plane does not matter qualitatively if h is sufficiently small: any displace- 
ment of the billiard will not affect any of its quantum mechanical properties 
as long as its shape and area remain fixed. 

As discussed in detail in ref. 1, the Weyl term of the average density of 
states can be calculated in closed form as 

V/w~yl(E ) = ( 8A /h  2o~ + ) F( o~_ /~  + ) (5) 

where .4 is the billiard area in the action space, 

~e = ( 1 + E/2) 2 

and 

f nl2 dO 
F ( k )  = _ k  2 "o (1 sin'- 0) '/-~ 

is the complete elliptic integral of the first kind. 
Defining a smoothed density of states as 

1 y" e - ( E -  En)2/2), 2 
I1;'(E) = 2(2n),/2 ,, 

where E,, are the eigenenergies, and subtracting from it the averaged Weyl 
term, we obtain the oscillatory function qosr which can be studied via 
Fourier transforms. This study has been carried out in detail in ref. 1 where 
it has been shown that the maxima of the Fourier transform of qosc(E) 
correspond to periods of classical closed orbits. Here we shall be concerned 
mostly with the wavefunctions. 

3. N U M E R I C A L  RESULTS 

In this section we present several numerical results concerning the 
eigenstates of the stadium action billiard. We show that the individual 
eigenstates exhibit scars of the shortest periodic orbits and that averaging 
the probability density over a group of neighboring states produces scars 
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in the way predicted by Bogomolny) 5) We also show projections of the 
Husimi distribution on the canonical planes (ql, P~) and (q2, P2) and com- 
pare them with the corresponding projections of periodic orbits. We 
emphasize that these computations are made possible by the finiteness of 
our Hamiltonian matrix, Eq. (4), which allows us to obtain all the 
eigenstates with very high accuracy. 

3.1. Individual Eigenfunctions 

In this subsection we show some selected odd-odd eigenfunctions of 
the stadium action billiard. After diagonalizing the Hamiltonian matrix, we 
express the wavefunctions as 

I ~  k) = ~ C,~,., Into) (6) 
tL  m 

where the indices n and m run in the set S defined in the previous section. 
Therefore, in the action representation, [~vk) is given by a discrete set of 
numbers 

(nml ~uk) = C k (7) 
l l l l t  

Since 0 plays the role of momentum in action billiards, plots of 
[(nrn[ ~gk)[2= iCkmL2 are equivalent to plots of [~gk(x,y)[2 for common 
billiards. Therefore, we display contour plots of k ,_ ]C,,,,,[ for some relevant 
eigenstates of the stadium. 

Figure 3 show the first six eigenstates, starting with the ground state 
at E = -1.9819. As in common billiards, the ground state exhibits a single 
maximum in the desymmetrized domain. The first excited state has one ver- 
tical nodal line, corresponding to one quantum of energy in the horizontal 
direction, while the second excited state has two, nearly vertical, nodal 

Fig. 3. First six odd-odd eigenstates of the stadium action billiard. 
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Fig. 4. Scars of periodic orbits in some excited eigenstates. (a-d) Scars of the vertical orbit 
at energies E 2t2= --1.4621, E 2t6= -1.4544, E 221= --1.a.A,~, and E 229= --1.4272. (e-h) Scars 
of the horizontal, V-shaped, bowtie, and losangle orbits at E TM = -1.1949, E at6= -1.2432, 
E28~ --1.3152, and E 225= -1.4343, respectively. (i) An ergodic state at E 297= -1.2834. 

lines. The third excited state has one horizontal  nodal  line and so forth. 
Therefore, the first excited states of  the action billiard follow about  the 
same structure as the corresponding states of  the c o m m o n  stadium billiard. 

Next, in Fig. 4 we show some selected highly excited eigenstates in the 
interval - 1 . 5  to - 0 . 5 .  As discussed in ref. 1, this is an interesting region, 
since the average density o f  states is nearly constant  there and most  of  the 
periodic orbits satisfy Or/aE ~ O. Figures 4a -4d  show scars of  the vertical 
family with two, four, six and eight nodes, respectively. Figures 4e-4h  show 
scars of  the horizontal ,  the V-shaped, the bowtie, and the losangle orbits, 

Fig. 5. Six consecutive eigenfunctions close to E=0 with energies (a) -0.0020; (b) -0.0017, 
(c) -0.0013, (d) -0.0011, (e) 9.7• 10 -7, and (f) 0.0000. 
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respectively, while Fig. 4i shows an apparently ergodic wavefunction, with 
no definite pattern. 

Finally, Fig. 5 shows a sequence of six eigenfunctions close to E = 0, 
where the average density of states has a sharp peak. Most of the eigen- 
functions in this region are strongly scarred by simple periodic orbits. This 
is an interesting fact that will be discussed in the next subsection. 

3.2. Averaging Over Probability Densities 

According to the semiclassical theory developed by Heller ~~ and 
Bogomolny, tS~ scars of periodic orbits are expected to occur, if not in the 
individual eigenfunctions, at least in local averages over groups of 
wavefunctions after suitably smearing also over the coordinates. More 
explicitly, we define the quantity 

P(E, AE)=(I  ~, Ig~"[ "-) (8) 

where the sum runs in the interval AE centered at E, M is the number of 
wavefunctions within this interval, and the symbol ( . )  means average over 
coordinates (remember that, even for action billiards, periodic orbits are 
parametrized by their energy). Then, for a given value of AE, scars of peri- 
odic orbits with periods r ~< h/AE will be observed at energies close to E if 
the quantization condition 

fp dq = (n + ~/4) h (9) 

is satisfied, where ~ is the Maslov index and the integration is along the 
orbit. 

For  the energy interval from -1 .5  to -0 .5 ,  the average density of 
states is about 1.629 x 10 -3, and the shortest classical period is r = 1.5 for 
the vertical orbit at E = - 1 . 0 .  Therefore, choosing AE=13.325• 10 -3 
(h =0.020) selects only the vertical orbit as a possible scar. This choice 
corresponds to average over about eight eigenstates in this energy interval. 
The quantization condition for the vertical family of the action billiard 
reads 

f O (10) dI= nh 

Figure 6 shows contour plots of P(E, AE) for E =  -1.3873, - 1.3856, 
-1.3839 and -1.3823. For the vertical orbit, the energy quantizes at 
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Fig. 6. Averaged probability density p(E, AE) over eight eigenstates for (a) E--- --1.3873, (b) 
E=-1 .3856,  (c) E=-1 .3839,  and (d) E=-1 .3823.  The vertical orbit quantizes at 
E =  -1.3864. 

Fig. 7. Averaged probability density P(E, 6E) over four eigenstates for (a) E--- -1.3840, (b) 
E =  -1.3822, and (c) E =  -1.3804. Both the vertical and the horizontal orbits quantize at 
E =  -I.3864. 

Fig. 8. Averaged probability density P(E, fiE) over four eigenstates for (a) E =  -I.3509, (b) 
E =  -I.3491, and (c) E =  -1.3466. Here only the horizontal orbit quantizes at E =  -1.3510. 

Fig. 9. Averaged probability density P(E, fiE) over four eigenstates for (a) E =  -1.0424, 
(b) E =  -1.0401, and (c) E =  -1.0386. The V-shaped orbit quantizes at E =  -1.0490. 

Fig. 10. Averaged probability density P(E, 6E) over four eigenstates for (a) E= -1.2123, 
(b) E =  -1.2103, and (c) E =  -1.2085. The losangle orbit quantizes at E =  -1.2252. 
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E = - 1.3864 for 17 = 14 and, indeed, we can see very clearly that the verti- 
cal scar shows up when P(E, AE)  is computed with the states 244-251, 
whose averaged energy is 1.3857. As the average energy E is moved away 
from the quantized energy, the scar gets fainter and eventually disappears. 

Decreasing A E  to 6.663 x I0-3, which corresponds to, an average over 
about four eigenstates, allows for the identification of orbits with periods 
up to r - 3.0, which includes the horizontal, V-shaped, bowtie and losangle 
orbits. Since the horizontal orbit is twice as long as the vertical orbit, the 
energies where the horizontal quantizes will sometimes correspond to 
energies where the vertical also quantizes. In fact, this is going to happen 
at every other quantized horizontal energy. At E =  -1.3864, for instance, 
both orbits are quantized and we should see their scars superimposed. This 
is indeed what happens, as shown in Fig. 7. At E = -1.3822, on the other 
hand, only the horizontal orbit is quantized and its scar is the only one to 
show up. This is shown in Fig. 8. 

Figures 9 and 10 show the neighborhood of E = - 1 . 0 4 0 1  and 
E =  -1.2103 where the V-shaped and losangle orbits quantize, respectively. 
Those values were chosen so as to be distant from the values where other 
orbits, such as the vertical and horizontal, quantize. 

Now we go back to Fig. 5 and try to understand the scars close to 
E = 0. We notice that, although the average density of states, Eq. (5), blows 
up at E =  0, the actual density (for a finite h) is large but finite. The periods 
of the classical orbits, on the other hand, all tend to infinity at E = 0, since 
| -~ 0 according to Eq. (2). Since the smoothing A E  necessary to observe an 
orbit with period r is just h/r, we see that A E  goes to zero faster than the 
average level spacing as E--* 0. Therefore, averaging over just one state 
(which means no averaging at all) is sufficient. 

3.3. Projected Husimi Distributions 

We finally study the scars of some individual eigenstates in terms of 
the Husimi distributions. Since our model system has two degrees of 
freedom, one possible way to look at the four-dimensional Husimi function 
is to project it down onto a canonical plane. Therefore, following ref. 11, 
we define 

1 f (ZlZ2[ ~Vk) d2z2 h l ( q , , P l )  rc 

e" e2_2" _2" C k C k i i P t - - 1 5 1 )  
= ~ . , . i  ,,.~ (n! m!)  ~/'- 

n), m, I 
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-3.0 * 
-3.0 0.0 3.0 
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-3.0 
-3.0 3.0 0.0 
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3.0 3.0 

pl o.o p2 o.o 
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Fig. 11. Projections of the Husimi functions hi(q1, P,) and h2(q2, p_,) for the eigenstates 
E =  -1.4621, E =  1.2432, and E =  -1.2834 (see Figs. 4a, 41", and 4i). The thick lines in (a) and 
(b) are projections of the vertical and V-shaped orbits, respectively, at the same energy. 
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and 

where 

1 I (zlz,_[ ~ )  d'-zj h2(q2'P2) 

~/,,, exp( - z ,  f , )  k k ~ 2 - 2  - - 
= C""IC ...... (n! l!) '/2 

n,  n~, I 

Z l Z ' I  Z 2 " ~ 2 ~  t 
[zlzz) =exp  2 -~ .)exp(zlal+zzat,_)lO0> (11) 

is the two-dimensional coherent state for the two-dimensional harmonic 
oscillator and 

1 
"~,-v/~ (q~ + iP~) 

In each of the two canonical planes, q; versus p;, the action billiard 
projects as a ring ~ bounded by the smallest and largest values of I~. A ver- 
tical orbit with negative energy E, for instance, projects onto the (ql, Pl)  
plane as q~ = const, p~ = 0  (or 0~ =z~ and Il = const). On the (q2, P2) plane 
the same orbit projects as two radial lines at 0, = +arccos(1 - E ) .  

Figure 11 shows the projections h~(q~,p~) and h2(q2, p2) for the 
eigenstates 212, 316, and 297 (see Fig. 4), which correspond to scars of the 
vertical, horizontal, and a chaotic state, confirming that the scars also 
behave as in common billiards when observed in phase space. 

4. CONCLUSIONS 

The quantum mechanical billiard studied in this paper is completely 
different from the usual stadium billiard. Among the important differences 
is the fact that all eigenvalues lie in the range - 2  to 2, since each cos 0i 
is itself limited to the range - 1  to I. In particular, this leads to a peculiar 
average (Weyl) density of states. Another important point is that the 
Hamiltonian cannot be separated into kinetic plus potential energies and 
both q and p change between two consecutive bounces at the boundary, 
while it is the angles that are kept constant. Nevertheless, the structure of 
the underlying classical periodic orbits is identical to that of the common 
stadium billiard. In ref. 1 we verified the validity of the GOE behavior of 
the spectral statistics and the contribution of individual periodic orbits to 
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its fluctuations. Here we have shown that the periodic orbits affect the 
eigenstates of the action billiard in much the same way as they affect the 
eigenstates of common billiards, providing again a dramatic confirmation 
of how these features are determined exclusively by the classical motion. 
Therefore, although the stadium action billiard is very much different 
globally from the common stadium billiard, in the limit h ~ 0 the local 
properties, i.e., the quantum properties of a classically small energy inter- 
val, resemble the usual billiard in all respects. 

These combined results show that action billiards are very interesting 
models for the study of quantum chaos and, in particular, to test the 
validity of the semiclassical propagator, since the quantum propagator can 
be computed exactly for all times. 

One interesting remark on the practical side of computing eigenvalues 
is that boundary integral methods essentially reduce the 2D billiard to 1D, 
while the present billiards live in 2D explicitly. However, it should be 
noticed that a single matrix diagonalization provides all the eigenvalues of 
the action billiard, while boundary methods require continuous energy 
scans of a determinant to find the eigenenergies. Finally, we remark that, 
although strange at first sight, the Hamiltonian we have used in this work 
has a close relative in solid-state physics, where the divergence of the den- 
sity of states at E = 0  is known as the Van Hove singularityJ ~21 
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